https://www.selleckchem.com/pr....oducts/3-methyladeni
In this paper, we present a study where we use deep neural networks for categorization of watermarks with varying levels of detail. The macro-averaged F1-score on an imbalanced 12 category classification task is 88.3 %, the multi-labelling performance (Jaccard Index) on a 622 label task is 79.5 %. To analyze the usefulness of an image-based system for assisting humanities scholars in cataloguing manuscripts, we also measure the performance of similarity matching on expert-crafted test sets of varying sizes (50 and 1000 watermark