https://www.selleckchem.com/pr....oducts/acalabrutinib
To obtain more accurate results, SEEDS was also used to optimize the coarse results obtained from the pretrained CNN model. Five indicators were adopted to evaluate the final identification results. Furthermore, 15 test samples concerning different classification environments were tested through the proposed model, and it performed well under all of the employed evaluation indexes, with an average precision of 0.98. The results demonstrate that the proposed model is robust for metal scrap identification, which can be expanded to a