https://www.selleckchem.com/products/dnqx.html
To identify a gene signature for the prognosis of breast cancer using high-throughput analysis. RNASeq, single nucleotide polymorphism (SNP), copy number variation (CNV) data and clinical follow-up information were downloaded from The Cancer Genome Atlas (TCGA), and randomly divided into training set or verification set. Genes related to breast cancer prognosis and differentially expressed genes (DEGs) with CNV or SNP were screened from training set, then integrated together for feature selection of identify robust biomarkers using RandomF