https://www.selleckchem.com/products/unc3866.html
3D object recognition is an generic task in robotics and autonomous vehicles. In this paper, we propose a 3D object recognition approach using a 3D extension of the histogram-of-gradients object descriptor with data captured with a depth camera. The presented method makes use of synthetic objects for training the object classifier, and classify real objects captured by the depth camera. The preprocessing methods include operations to achieve rotational invariance as well as to maximize the recognition accuracy while reducing the feature