https://www.selleckchem.com/products/U0126.html
We propose methods to estimate sufficient reductions in matrix-valued predictors for regression or classification. We assume that the first moment of the predictor matrix given the response can be decomposed into a row and column component via a Kronecker product structure. We obtain least squares and maximum likelihood estimates of the sufficient reductions in the matrix predictors, derive statistical properties of the resulting estimates and present fast computational algorithms with assured convergence. The performance of the proposed