https://www.selleckchem.com/products/VX-770.html
4 ± 25.3 M-1 for d-glucose, 15.0 ± 3.3 M-1 for d-galactose, and (8.05 ± 0.59) × 103 M-1 for d-allulose. These features of 1/γCyD enable ratiometric fluorescence sensing with high sensitivity and selectivity for d-allulose. The limits of detection and quantification of 1/γCyD for d-allulose at pH 8.0 were determined to be 6.9 and 21 μM, respectively. Induced circular dichroism spectral study has shown that the reaction of 1/γCyD with d-allulose causes the monomerisation of the dimer of probe 1 that is encapsulated by γ-CyD, which leads to