https://www.selleckchem.com/mTOR.html
Exploiting two-dimensional (2D) materials with natural band gaps and anisotropic quasi-one-dimensional (quasi-1D) carrier transport character is essential in high-performance nanoscale transistors and photodetectors. Herein, the stabilities, electronic structures and carrier mobilities of 2D monolayer ternary metal iodides MLaI5(M = Mg, Ca, Sr, Ba) have been explored by utilizing first-principles calculations combined with numerical calculations. It is found that exfoliating MLaI5monolayers are feasible owing to low cleavage energy of 0.19-0.21 J m