https://www.selleckchem.com/products/odm-201.html
Many high-performance DTA deep learning models have been proposed, but they are mostly black-box and thus lack human interpretability. Explainable AI (XAI) can make DTA models more trustworthy, and allows to distill biological knowledge from the models. Counterfactual explanation is one popular approach to explaining the behaviour of a deep neural network, which works by systematically answering the question "How would the model output change if the inputs were changed in this way?". We propose a multi-agent reinforcement learning frame