https://www.selleckchem.com/products/sj6986.html
For both full and sample datasets, VDSNet outperforms existing methods in terms of a number of metrics including precision, recall, F0.5 score and validation accuracy. For the case of full dataset, VDSNet exhibits a validation accuracy of 73%, while vanilla gray, vanilla RGB, hybrid CNN and VGG, and modified capsule network have accuracy values of 67.8%, 69%, 69.5% and 63.8%, respectively. When sample dataset rather than full dataset is used, VDSNet requires much lower training time at the expense of a slightly lower validation accuracy.