https://www.selleckchem.com/
Using nonlinear mathematical models and experimental data from laboratory and clinical studies, we have designed new combination therapies against COVID-19.Lévy-like movements, which are an asymptotic power law tailed distribution with an upper cutoff, are known to represent an optimal search strategy in an unknown environment. Organisms seem to show a Lévy walk when μ ≈ 2.0. In the present study, I investigate how such a walk can emerge as a result of the decision making process of a single walker. In my proposed algorithm, a walker avoids a certain direct