https://www.selleckchem.com/products/uc2288.html
3 seconds, which was significantly faster than the control methods. For the assessment on non-native backbones, FASPR showed an equivalent or better performance on I-TASSER predicted backbones and the backbones perturbed from experimental structures. Detailed analyses showed that the major advantage of FASPR lies in the optimal combination of the dead-end elimination and tree decomposition with a well optimized scoring function, which makes FASPR of practical use for both protein structure modeling and protein design studies. AVAILABILIT