https://www.selleckchem.com/EGFR(HER).html
Non-linear mixed effect models are widely used and increasingly integrated into decision-making processes. Propagating uncertainty is an important element of this process, and while standard errors (SE) on pa- rameters are most often computed using asymptotic approaches, alternative methods such as the bootstrap are also available. In this article, we propose a modified residual parametric bootstrap taking into account the different levels of variability involved in these models. The proposed approach uses samples from the individual condition