https://www.selleckchem.com/pr....oducts/SB-203580.htm
Hill-type muscle models are widely employed in simulations of human movement. Yet, the parameters underlying these models are difficult or impossible to measure in vivo. Prior studies demonstrate that Hill-type muscle parameters are encoded within dynamometric data. But, a generalizable approach for estimating these parameters from dynamometric data has not been realized. We aimed to leverage musculoskeletal models and artificial neural networks to classify one Hill-type muscle parameter (maximum isometric force) from easily measurabl