https://www.selleckchem.com/HSP-90.html
Deep neural networks have been successfully applied to many real-world applications. However, such successes rely heavily on large amounts of labeled data that is expensive to obtain. Recently, many methods for semi-supervised learning have been proposed and achieved excellent performance. In this study, we propose a new EnAET framework to further improve existing semi-supervised methods with self-supervised information. To our best knowledge, all current semi-supervised methods improve performance with prediction consistency and confidence ideas