https://www.selleckchem.com/products/mmri62.html
Magnetic resonance imaging (MRI) is widely used to get the information of anatomical structure and physiological function with the advantages of high resolution and non-invasive scanning. But the long acquisition time limits its application. To reduce the time consumption of MRI, compressed sensing (CS) theory has been proposed to reconstruct MRI images from undersampled k-space data. But conventional CS methods mostly use iterative methods that take lots of time. Recently, deep learning methods are proposed to achieve faster reconstruct