https://www.selleckchem.com/products/AZD0530.html
Photoinduced electron transfer in multichromophore molecular systems is defined by a critical interplay between their core unit configuration (donor, molecular bridge, and acceptor) and their system-solvent coupling; these lead to energy and charge transport processes that are key in the design of molecular antennas for efficient light harvesting and organic photovoltaics. Here, we quantify the ultrafast non-Markovian dissipative dynamics of electron transfer in D-π-A molecular photosystems comprising 1,3,5,7-tetramethyl-8-phenyl-4,4-di