https://www.selleckchem.com/products/mk571.html
In an optical lattice, entropy and mass transport by first-order tunneling are much faster than spin transport via superexchange. Here we show that adding a constant force (tilt) suppresses first-order tunneling, but not spin transport, realizing new features for spin Hamiltonians. Suppression of the superfluid transition can stabilize larger systems with faster spin dynamics. For the first time in a many-body spin system, we vary superexchange rates by over a factor of 100 and tune spin-spin interactions via the tilt. In a tilted lattice