https://www.selleckchem.com/products/ti17.html
fungal pathogen Candida glabrata, Rad53 phosphorylation is not induced by DNA damage, nor do these cells arrest in S phase under these conditions, in contrast to the closely related yeast Saccharomyces cerevisiae Instead, C. glabrata cells continue to divide in the presence of DNA damage, resulting in significant cell lethality. Finally, we show that a number of genes involved in DNA repair are strongly induced by DNA damage in S. cerevisiae but repressed in C. glabrata Together, these findings shed new light on mechanisms regulating genom