https://www.selleckchem.com/
Finally, BiGRU is used to determine the dependence between the sleep stages and to realize the automatic learning of sleep data staging features and sleep cycle extraction. According to the experiment, the classification accuracy and kappa coefficient of the proposed method on sleep-EDF data set are 84.24% and 0.78, which are respectively 0.24% and 0.21 higher than the traditional residual net. At the same time, this paper also verified the proposed method on UCD and SHHS data sets, and the figure of classification accuracy is 79.34% and 81.6%, respectively