https://www.selleckchem.com/products/ad-5584.html
Besides, it exhibited terrific electrochemical performance for NADH oxidation and sensing by greatly boosting the response and lowering the oxidation overpotential. It could also work on biomimetic cofactors with even higher activity. Finally, xylose dehydrogenase was immobilized with the nanozyme to constitute a hybrid bioelectrode for xylose sensing. The biosensor had a xylose detecting range of 5-400 μM with the limit of detection as low as 1 μM and can retain its performance after being reused several times. Our results suggest that