https://www.selleckchem.com/products/gossypol.html
A comprehensive density functional theory investigation has been carried out to unravel the complete mechanistic landscape of aqueous-phase formic acid dehydrogenation (FAD) catalyzed by a pyridyl-imidazoline-based Mn(I) catalyst [Mn(PY-NHIM)(CO)3Br], which was recently reported by Beller and co-workers. The computed free energy profiles show that for the production of a Mn-formate intermediate [Mn(HCO2-)], a stepwise mechanism is both kinetically and thermodynamically favorable compared to the concerted mechanism. This stepwise mechan