https://www.selleckchem.com/products/cx-5461.html
Fish adaption behaviors in complex environments are of great importance in improving the performance of underwater vehicles. This work presents a numerical study of the adaption behaviors of self-propelled fish in complex environments by developing a numerical framework of deep learning and immersed boundary-lattice Boltzmann method (IB-LBM). In this framework, the fish swimming in a viscous incompressible flow is simulated with an IB-LBM which is validated by conducting two benchmark problems including a uniform flow over a stationary