https://www.selleckchem.com/products/tp-0903.html
Surface diffusion is important for a broad range of chemical and physical processes that take place at the surfaces of amorphous solids, including surface crystallization. In this work, the temporal evolution of nanoholes is monitored with atomic force microscopy to quantify the surface dynamics of amorphous selenium. In molecular glasses, the surface diffusion coefficient has been shown to scale with the surface crystal growth rate (us) according to the power relation us ≈ Ds 0.87. In this study, we observe that the same power law appl