https://www.selleckchem.com/pr....oducts/bobcat339.htm
We consider smooth flows preserving a smooth invariant measure, or, equivalently, locally Hamiltonian flows on compact orientable surfaces and show that, when the genus of the surface is two, almost every such locally Hamiltonian flow with two non-degenerate isomorphic saddles has singular spectrum. More in general, singularity of the spectrum holds for special flows over a full measure set of interval exchange transformations with a hyperelliptic permutation (of any number of exchanged intervals), under a roof with symmetric logarith