https://www.selleckchem.com/products/cx-5461.html
Accurate subcortical segmentation of infant brain magnetic resonance (MR) images is crucial for studying early subcortical structural growth patterns and related diseases diagnosis. However, dynamic intensity changes, low tissue contrast, and small subcortical size of infant brain MR images make subcortical segmentation a challenging task. In this paper, we propose a spatial context guided, coarse-to-fine deep convolutional neural network (CNN) based framework for accurate infant subcortical segmentation. At the coarse stage, we propose