https://www.selleckchem.com/products/U0126.html
Genomic prediction (GP) has revolutionized animal and plant breeding. However, better statistical models that can improve the accuracy of GP are required. For this reason, in this study, we explored the genomic-based prediction performance of a popular machine learning method, the Support Vector Machine (SVM) model. We selected the most suitable kernel function and hyperparameters for the SVM model in eight published genomic data sets on pigs and maize. Next, we compared the SVM model with RBF and the linear kernel functions to the two mo