https://www.selleckchem.com/products/d-1553.html
More functional mitochondria in cisplatin-resistant compared to cisplatin-sensitive cells were associated to enzymatic changes affecting either the electron transport chain (SKOV-3/SKOV-3-R model) or mitochondrial coupling (COV-362/COV-362-R model). Our findings further indicate that the preservation of functional mitochondria in these cells could be due to an increased mitochondrial turnover rate, suggesting mitophagy inhibition as a potential strategy to tackle cisplatin-resistant human ovarian cancer progression. Implications Besides