https://www.selleckchem.com/products/cmc-na.html
In certain modeling approaches, activation analyses of task-based fMRI data can involve a relatively large number of predictors. For example, in the encoding model approach, complex stimuli are represented in a high-dimensional feature space, resulting in design matrices with many predictors. Similarly, single-trial models and finite impulse response models may also encompass a large number of predictors. In settings where only few of those predictors are expected to be informative, a sparse model fit can be obtained via L1-regularizatio