https://www.selleckchem.com/products/t0901317.html
We previously reported that oxidative stress leads to a decrease in β1AR expression and catecholamine responsiveness in cardiomyocytes. This study shows that redox-inactivation of cardiomyocyte β1ARs is via a mechanism involving N-terminal truncation at R31↓L32 by ADAM17. In keeping with the previous observation that N-terminally truncated β1ARs constitutively activate an AKT pathway that affords protection against doxorubicin-dependent apoptosis, overexpression of a cleavage resistant β1AR mutant exacerbates doxorubicin-dependent apop