https://www.selleckchem.com/JAK.html
Small mammals native to high altitude must sustain high rates of thermogenesis to cope with cold. Skeletal muscle is a key site of shivering and non-shivering thermogenesis, but the importance of mitochondrial plasticity in cold hypoxic environments remains unresolved. We examined high-altitude deer mice, which have evolved a high capacity for aerobic thermogenesis, to determine the mechanisms of mitochondrial plasticity during chronic exposure to cold and hypoxia, alone and in combination. Cold exposure in normoxia or hypoxia increased mitochondria