https://www.selleckchem.com/products/byl719.html
Intervention strategies to prevent adolescents from using electronic nicotine delivery systems (ENDS) should be based on robust predictors of ENDS use that may differ from predictors of conventional cigarette use. Literature points to the need for uncovering emerging predictors of ENDS use. This study identified emerging predictors of adolescent ENDS use using machine learning (ML) techniques. We analyzed nationally representative multi-wave longitudinal survey data (2013-2018) drawn from the Population Assessment of Tobacco and Health S