https://www.selleckchem.com/pr....oducts/s-gsk1349572.
As a major method for relation extraction, distantly supervised relation extraction (DSRE) suffered from the noisy label problem and class imbalance problem (these two problems are also common for many other NLP tasks, e.g., text classification). However, there seems no existing research in DSRE or other NLP tasks that can simultaneously solve both problems, which is a significant insufficiency in related researches. In this paper, we propose a loss function which is robust to noisy label and efficient for the imbalanced class data