https://www.selleckchem.com/products/mrtx1719.html
Domain adaptation aims to reduce the mismatch between the source and target domains. A domain adversarial network (DAN) has been recently proposed to incorporate adversarial learning into deep neural networks to create a domain-invariant space. However, DAN's major drawback is that it is difficult to find the domain-invariant space by using a single feature extractor. In this article, we propose to split the feature extractor into two contrastive branches, with one branch delegating for the class-dependence in the latent space and anot