https://www.selleckchem.com/Androgen-Receptor.html
A major challenge in big and high-dimensional data analysis is related to the classification and prediction of the variables of interest by characterizing the relationships between the characteristic factors and predictors. This study aims to assess the utility of two important machine-learning techniques to classify subjects with obstructive sleep apnea (OSA) using their daytime tracheal breathing sounds. We evaluate and compare the performance of the random forest (RF) and regularized logistic regression (LR) as feature selection too