https://www.selleckchem.com/
Besides, the tested products induced a significant increase (p less then 0.05) of intracellular ROS generation, and a depletion of sulfhydryl concentration in HCT15 cells. The polyphenolic fraction arrested tumor growth and induced apoptosis in the xenograft mice model. These results demonstrate the cytotoxic activity of T. testudinum metabolites associated, at least, with ROS overproduction and pro-apoptotic effects. Here we demonstrated for the first time the antitumor activity of a T. testudinum polar extract in a xenograft mice model. These results sugg