https://www.selleckchem.com/products/sr4370.html
Synchrotron-based X-ray absorption spectroscopy and scattering are known in situ probes of metal nanoparticles (NPs). A limited number of laboratory techniques allow post-synthesis diagnostics of the active metal surface area. This work demonstrates the high potential of infrared spectroscopy as an in situ laboratory probe for the growth of metal NPs on a substrate. We introduce a small fraction of CO molecules into the reaction mixture as a probe to monitor the reduction kinetics of the Pd2+ precursor on ceria in hydrogen.The unpreceden