https://www.selleckchem.com/products/wrw4.html
Multi-class classification for highly imbalanced data is a challenging task in which multiple issues must be resolved simultaneously, including (i) accuracy on classifying highly imbalanced multi-class data; (ii) training efficiency for large data; and (iii) sensitivity to high imbalance ratio (IR). In this paper, a novel sequential ensemble learning (SEL) framework is designed to simultaneously resolve these issues. SEL framework provides a significant property over traditional AdaBoost, in which the majority samples can be divided into m