https://www.selleckchem.com/products/cw069.html
Time- and angular- resolved photoelectron spectroscopy is a powerful technique to measure electron dynamics in solids. Recent advances in this technique have facilitated band and energy resolved observations of the effect that excited phonons, have on the electronic structure. Here, we show with the help of ab initio simulations that the Fourier analysis of the time-resolved measurements of solids with excited phonon modes enables the determination of the band- and mode-resolved electron-phonon coupling directly from the experimental data