https://www.selleckchem.com/products/rg-7112.html
We study active learning (AL) based on gaussian processes (GPs) for efficiently enumerating all of the local minimum solutions of a black-box function. This problem is challenging because local solutions are characterized by their zero gradient and positive-definite Hessian properties, but those derivatives cannot be directly observed. We propose a new AL method in which the input points are sequentially selected such that the confidence intervals of the GP derivatives are effectively updated for enumerating local minimum solutions. We