https://www.selleckchem.com/pr....oducts/l-arginine-l-
Generative adversarial networks (GAN) are widely used in medical image analysis tasks, such as medical image segmentation and synthesis. In these works, adversarial learning is directly applied to the original supervised segmentation (synthesis) networks. The usage of adversarial learning is effective in improving visual perception performance since adversarial learning works as realistic regularization for supervised generators. However, the quantitative performance often cannot improve as much as the qualitative perform