https://www.selleckchem.com/mTOR.html
This paper proposes a novel incremental training mode to address the problem of Deep Reinforcement Learning (DRL) based path planning for a mobile robot. Firstly, we evaluate the related graphic search algorithms and Reinforcement Learning (RL) algorithms in a lightweight 2D environment. Then, we design the algorithm based on DRL, including observation states, reward function, network structure as well as parameters optimization, in a 2D environment to circumvent the time-consuming works for a 3D environment. We transfer the designed algorithm to a