https://www.selleckchem.com/pr....oducts/prt062607-p50
Earth's core is likely the largest reservoir of carbon (C) in the planet, but its C abundance has been poorly constrained because measurements of carbon's preference for core versus mantle materials at the pressures and temperatures of core formation are lacking. Using metal-silicate partitioning experiments in a laser-heated diamond anvil cell, we show that carbon becomes significantly less siderophile as pressures and temperatures increase to those expected in a deep magma ocean during formation of Earth's core. Based on