https://www.selleckchem.com/products/cpypp.html
An original graph clustering approach for the efficient localization of error covariances is proposed within an ensemble-variational data assimilation framework. Here, the localization term is very generic and refers to the idea of breaking up a global assimilation into subproblems. This unsupervised localization technique based on a linearized state-observation measure is general and does not rely on any prior information such as relevant spatial scales, empirical cutoff radii or homogeneity assumptions. Localization is performed via gra