https://www.selleckchem.com/products/sc-43.html
In this paper, infinite homoclinic orbits existing in the Lorenz system are analytically presented. Such homoclinic orbits are induced by unstable periodic orbits on bifurcation trees through period-doubling cascades. Each unstable periodic orbit ends at its corresponding homoclinic orbit. Traditional computational methods cannot obtain homoclinic orbits from the corresponding unstable periodic orbits. This is because unstable periodic orbits in the Lorenz system cannot be achieved in numerical simulations. Herein, the stable and unstable