https://www.selleckchem.com/products/fr180204.html
In the context of supervised statistical learning, it is typically assumed that the training set comes from the same distribution that draws the test samples. When this is not the case, the behavior of the learned model is unpredictable and becomes dependent upon the degree of similarity between the distribution of the training set and the distribution of the test set. One of the research topics that investigates this scenario is referred to as domain adaptation (DA). Deep neural networks brought dramatic advances in pattern recognitio