https://www.selleckchem.com/products/cx-5461.html
The classification accuracy levels for COV19-ResNet and COV19-CNNet were 97.61% and 94.28%, respectively. The inference engines were developed from scratch using new and special deep neural networks without pre-trained models, unlike other studies in the field. These powerful diagnostic engines allow for the early detection of COVID-19 as well as distinguish it from viral pneumonia with similar radiological appearances. Thus, they can help in fast recovery at the early stages, prevent the COVID-19 outbreak from spreading, and contribute