https://www.selleckchem.com/products/xmu-mp-1.html
Deep convolutional neural networks (DCNN) nowadays can match human performance in challenging complex tasks, but it remains unknown whether DCNNs achieve human-like performance through human-like processes. Here we applied a reverse-correlation method to make explicit representations of DCNNs and humans when performing face gender classification. We found that humans and a typical DCNN, VGG-Face, used similar critical information for this task, which mainly resided at low spatial frequencies. Importantly, the prior task experience, whi