https://www.selleckchem.com/products/xst-14.html
In particular, the use of StoneFil with a nominally constant in-fill density of 100% resulted in regions that were approximately inner-bone-equivalent, at kV and MV energies. These regions were bounded by walls that were substantially denser than inner bone, although generally not dense enough to be truly cortical-bone-equivalent. This proof-of-concept study demonstrated a method by which multiple tissue-equivalent materials (eg. muscle-, lung- and bone-equivalent media) can be deposited within one 3D print, allowing complex phantom comp