https://www.selleckchem.com/products/ars-1620.html
Combining the information bottleneck model with deep learning by replacing mutual information terms with deep neural nets has proven successful in areas ranging from generative modelling to interpreting deep neural networks. In this paper, we revisit the deep variational information bottleneck and the assumptions needed for its derivation. The two assumed properties of the data, X and Y, and their latent representation T, take the form of two Markov chains T - X - Y and X - T - Y . Requiring both to hold during the optimisation process