https://www.selleckchem.com/products/azd5363.html
In order to solve the problem of pedestrian positioning in the indoor environment, this paper proposes a high-precision indoor pedestrian positioning system (HPIPS) based on smart phones. First of all, in view of the non-line-of-sight and multipath problems faced by the radio-signal-based indoor positioning technology, a method of using deep convolutional neural networks to learn the nonlinear mapping relationship between indoor spatial position and Wi-Fi RTT (round-trip time) ranging information is proposed. When constructing the train